

AX2 Transformer Secondary Wiring Voltages

As a precaution to ensure proper transformer wiring, this page explains what voltages the secondary wires need to see. Before wiring up a new transformer, you may want to measure the voltages on the secondary taps for verification.

The blue and red wires on the AX2 rear board need to see about 9.75 VAC between them.

The yellow and orange wires on the AX2 rear board should have about 59 VAC across them. The green wire is the center tap between the yellow and orange, so yellow-to-green should have about 29.5 VAC and orange-togreen should have about 29.5 VAC.

AX2 MAIN BOARD REV:D ASSEMBLY

AX2 REAR BOARD

REV:D ASSEMBLY

1	30-03-061	Washer, \#6 internal lock	2.000000
1	$30-06-000$	NUT, . 300 HEX, NO.4, STL, ZINC C RCPT AND +5 V)	2.000000
1	$30-06-0024$ NYI	NUT . 370 HEX 10-24 STL ZINC W/ SERT	4.000000
1	$\begin{array}{r} 30-06-3232 \\ \text { pin } \end{array}$	Threaded Hex Nut for 1/4" 6 phone jack	7.000000
1	$30-21-0012$ (AX	PLATE XMFR 92MM x 93.5 MM CRS 2)	1.000000
1	$\begin{array}{r} 30-24-0003 \\ \text { Pand } \end{array}$	CABLE TIE Panduit 3 7/8" clear T1M-M	2.000000
1	30-40-282	TRANSFORMER GASKET, FLEXTONE	1.000000
1	30-42-0012	Overlay, AX2	1.000000
1	30-45-200	KNOB PLASTIC	9.000000
1	30-51-001	BOTTOM, METAL, AX2	1.000000
1	30-51-021	CHASSIS, TOP, AL (AX2)	1.000000
1	30-51-601	HEATSINK $4 \times 3.75 \times 1$ " AL	2.000000
1	$\begin{array}{r} 30-57-0580 \\ \text { Heav } \end{array}$	HANDIE/STRAP y, Black	1.000000
1	$\begin{gathered} 30-57-058 \\ \mathrm{SH} \end{gathered}$	END CAPS, BLACK, TEXTURED FINI	2.000000
1	30-60-200	LOGO LINE 6	1.000000
1	$\begin{array}{r} 30-63-0010 \\ 0 \mathrm{AM}, \end{array}$	INSULATION, VOLARAPOLYOLEFIN F x $1 / 4 \times 1 / 16$	2.000000
1	40-00-005	Manual, User's, AX2	1.000000
1	40-00-005	Chart, Patch, AX2	1.000000

2	40-10-0043L	FLEXTONE TOP LEFT FOAM BLOCK	1.000000
2	40-10-0043R	FLEXTONE TOP RIGHT FOAM BLOCK	1.000000
2	40-10-0043B	Foam Block, Bottom-Flextone	2.000000
1	40-10-0051	Carton, AX2, Outer	1.000000
1	40-10-0052	Carton, AX2, Inner	1.000000
1	40-20-0010	Plastic Bag, 43"x38"x.004, clear	1.000000
1	40-20-0011	Plastic Bag, $10 \times 16,2 \mathrm{mil}$	1.000000
1	$40-25-0100$ 4 pane	Label, Bar Code Serial Number abel - LTX 161125503	1.000000
1	40-25-0475	Label, speaker	2.000000
1	$\begin{aligned} & \text { 40-30-0020 } \\ & \text { Silver } \end{aligned}$	Label, Gloss Duropoly 613 1W x 0.5L 2 across	2.000000
1	50-00-0017	PCBA, AX2 MAIN	1.000000
2	01-04-0000	RES OR 1/4W 5\% 1206 SM	1.000000
2	01-04-0102	RES 1K 1/8W 5\% 1206 SM	11.000000
2	01-04-0103	Ref: R2, R4, R5, R7, R21, RES 10K 1/8W 5\% 1206 SM	4.000000
2	01-04-0105	```Ref: R43, R45, R49, R72 RES 1M 1/8W 5% 1206 SM```	3.000000
2	01-04-0122	$\begin{array}{rl} \text { Ref: R1, R3, } & \text { R42 } \\ \text { RES } & 1.2 \mathrm{~K} \\ 1 / 8 W & 5 \% \\ 1206 & \text { SM } \end{array}$	2.000000
2	01-04-0132	$\begin{array}{rl} \text { Ref: R11, R16 } \\ \text { RES } & 1.3 \mathrm{~K} \\ 1 / 8 \mathrm{~W} & 5 \% \\ 1206 \mathrm{SM} \end{array}$	2.000000

01-04-0133 RES 13K 1/8W 5\% 1206 SM

Ref: R67
01-04-0151 RES 150R 1/8W 5\% 1206 SM

Ref: R20, R22
01-04-0202 RES 2K 1/8W 5\% 1206 SM

Ref: R25
01-04-0221 RES 220R 1/8W 5\% 1206 SM

Ref: R40
01-04-0222
RES 2.2K 1/8W 5\% 1206 SM

Ref: R9, R10
01-04-0224 RES 220K 1/8W 5\% 1206 SM

Ref: R38
01-04-0272 RES 2.7K 1/8W 5\% 1206 SM

Ref: R69
01-04-0302 RES 3K 1/8W 5\% 1206 SM

Ref: R34, R35
01-04-0331 RES 330R 1/8W 5\% 1206 SM

Ref: R66
01-04-0332 RES 3.3K 1/8W 5\% 1206 SM

Ref: R50 - R57
01-04-0390
RES 39R 1/8W 5\% 1206 SM

Ref: R58-R65
01-04-0471 RES 470R 1/8W 5\% 1206 SM

Ref: R32, R33, R14, R17, R41, R48, R70
01-04-0472
RES 4.7K 1/8W 5\% 1206 SM

Ref: R19, R39, R46
01-04-0561
RES 560R 1/8W 5\% 1206 SM

Ref: R12, R18, R74
01-04-0752
RES 7.5K 1/8W 5\% 1206 SM
01-48-3103 POT 10KB SINGLE 16MM STEREO

Ref: R71
03-10-0331 CAP 330uF 10V 20\% RAD ELEC TH

Ref: C32, C33
03-18-0106 CAP 10uF 50V 20\% RAD ELEC TH

Ref: C9, C11, C13, C14, C19, C21, C23, C24, C27, C31, C34
03-46-0104 CAP 0.1 uF 50V $20 \% 1206$ SM

03-52-0101 CAP 100 pF 50V 20\% 0805 SM
X7R 08055A101KATMA
03-52-0182 CAP 1.8nF 50V $20 \% 0805 \mathrm{SM}$
X7R
Ref: C5, C6, C17, C18

Ref: D12-D15

> 06-28-0620 DIODE ZENER 6.2V SM
1.000000

Ref: D57
09-10-4401 TRANS NPN SMALL-SIGNAL 2N4401 8.000000

Ref: Q1- Q6, Q15, Q17
09-10-4403 TRANS PNP SMALL-SIGNAL 2N4403
SM
Ref: Q7-Q14
09-13-0054 TRANS NPN MID-POWER BIPOLAR BCP54 SM

Ref: 016
11-00-1198 Crystal Osc 11.98080MHz
HC-49/u holder
Ref: M9
11-40-0030 BATTERY LITHIUM 3V BR2325-1HG

Ref: M10
12-00-7905 IC REG -5V 100 mA TH
1.000000

Ref: U6
12-54-0084 IC OP AMP Quad TL084CD SM mfg p/n\# TL084CD

Ref: U1
12-54-5532 IC OP-AMP DUAL NE5532D SM
1.000000

Ref: U5
12-64-0542 IC CONVERTER A/D 8-BIT TLC542
SM
Ref: U7
12-64-1760 IC ADC part 1 of Stereo 20 bit 1.000000

PCM1760U-X
Ref: U2
12-64-1761 IC ADC Filter part 2 Stereo
1.000000

20 Bit DF1760U
Ref: U3
12-68-4320 IC CONVERTER D/A 20-BIT AK4320
SM
Ref: U4
15-62-0014 IC 74HC14 INVERTER-HEX SIN
1.000000
15-62-0138 IC 74HC138 INVERTING-DECODER
$3-8$ LINE SM

Ref: U18
15-62-0161 IC 74HC161 COUNTER BINARY 1.000000
4-BIT SM

Ref: U20
15-62-0165 IC 74HC165 SHIFT-REGISTER
PARLL-IN/SERIAL-OUT SM

Ref: U21
15-62-0573 IC 74HC573 BUFFER INVERTING
8-BIT SM

Ref: U11
15-62-0574 IC 74HC574 FLIP-FLOP D-TYPE
8-BIT SM

Ref: U8, U17
$\begin{array}{lll}15-66-0273 ~ I C ~ O C T A L-L A T C H ~ D-T Y P E ~ T R A N S ~ & 1.000000\end{array}$
TPIC6B273 SM

Ref: U16
15-70-6256 DRAM FLEXTONE
ISSI P/N IS4IC16257-35K
15-72-0256 IC SRAM 32K X 8
1.000000

CY62256LL-70SNC 0024623249

Ref: U15
15-84-8031 IC MPU 80C31 SM

Ref: U9
15-86-7070 IC DSP TMS57070FFT SM
2.000000

Ref: U12, U19
18-00-0314 RED LED TH
24.000000

SLX-LX3054ID

Ref: D9, D17, D25, D33-40, D42-43, D45-55
18-10-0003 7 segment RED, 3 digit led
1.000000

LDT-C514RI

Ref: D10
21-00-4420 JACK 1/4" EARTHING-WASHER

Ref: M12, M13
21-00-6616 JACK 1/4" STEREO FEMALE PCB-MN
6-PIN FLUSH

Ref: J1, J2
21-20-0204 HDR SIL 4-PIN 2mm SHRD
21-20-0205 HDR 5 -PIN 2 mm SHRD
2.000000

Ref: M3, M11
21-23-1002 CON 10×2 Male Rcpt 100 mI spa
cing
Ref: M4
21-34-0012 CAB SIL 4-Pin 2mm 45mm F-F

Ref: M1-M2
21-34-0013 Cable master volume assy

Ref: M3-M11
21-42-0028
SOCKET 28 pin TH

Ref: U14
30-03-121
WASHER, LOCK, INT T, No. 6

Ref: R71
30-15-0420 SPCR LED . 078 H x . 135 0.D. PL
ASTIC (ELM 4-2MM)
Ref: D9, D17, D25, D33-40, D42-43, D45-55

45-00-0011 EPROM, Programmed, AX2

Ref: U14

50-00-0018 PCBA, AX2 REAR

01-12-0027 RES 2.7R 1/4W 5\% DIP TH

Ref: R20, R21
01-12-0102 RES 1K 1/4W 5\% DIP TH

Ref: R2, R6, R17
01-12-0103
RES 10K 1/4W 5\% DIP TH
4.000000
1.000000

Ref: C17
03-18-0106 CAP 10uF 50V 20\% RAD ELEC TH
-

03-18-0478
Ref: C3, C4, C6, C10, C11, C13, C19

PCB-MNT RT-ANG LN 05075
Ref: J3, J4

PCB-MNT RT-ANG LN 05075	
	1.000000
$$	1.000000
Ref: J8 21-30-0020 Cable Assy, Ribbon 20 Pin	1.000000
21-26-0020 RIBBON CABLE, BARE, 20 PIN	1.000000
21-23-0020 CONNECTOR,RIBBON CABLE, 20PIN,	1.000000
21-23-0021 Connector, ribbon cable, 20 pin, male	1.000000
21-34-1501 Cable Assy-Brown, Cusom Per Dwg AX2 Transformer	1.000000
Ref: H6 21-34-1502 Cable Assy-Red, Custom per Dwg. AX2 Transformer	1.000000
Ref: H10 21-34-1503 Cable Assy-Orange, CustomPerDwg AX2 Transformer	1.000000
```Ref: H7 21-34-1504 Cable Assy-Yellow,CustomPerDwg AX2 Transformer```	1.000000
Ref: H9 21-34-1505 Cable Assy-Green, CustomPerDwg AX2 Transformer	1.000000
Ref: H8 21-34-1506 Cable Assy-Blue, Custom Per Dwg AX2 Transformer	1.000000
21-34-1509 Cable Assy-White, Custom PerDwg AX2 Transformer	1.000000
Ref: H1 21-34-1806 Cable Assy, Earthing	1.000000
Ref: M2 24-19-4025 FUSE 4A 125v	1.000000

Littlefuse\# H239 004 or equiv.
Ref: ECO\# 22204.

## 24-24-0010 SWITCH RF power

Ref: SW1
30-00-0607 SCR 6-32 $\times 7 / 16$ LG PHILLIPS PN 3.000000

H STL ZINC (W/ LK WASH)

Ref: J9, U3
30-06-0006 NUT, . 300 HEX, NO.4, STL, ZINC (FOR AC RCPT AND +5 V )

30-12-2210 STDF . 250 HEX 6-32 F/F . 500 LG AL (KEYSTONE P/N 2210)

Ref: U3

21-48-9521 FUSE HOLDER CLIP p/n 19521

50-00-0050 AX2 WOOD BOX ASSEMBLY

30-00-0621 SCR WD 6-18 $\times 11 / 4$ LG PHILLIP 3.000000 S RND HD STL BLK OXIDE

30-00-0812 SCR N0.8 $\times 3 / 4$ LG PHH TRUSS BL 16.000000 K OXIDE W/WAX (CORNER)

30-00-6839 FEET SCREW FOR AMP WOOD BOX
\#10-12X7/8 PHIL PN
30-06-1024 NUT 10-24 X 5/16 Tee
Plain steel, Tape/reel package
30-27-0010 AXSYS 212 PLASTIC EXTRUSION

30-30-1520 CORNER PROTECTOR, METAL, BLK,
NOTCHED, TWO LEGS
30-30-1530 Corner, black, black, two legs
2.000000
and cut out
30-36-0001 FABRIC VINYL BLACK-BRONCO
.926000
ASCO3 54"-Wide
30-39-0001 FAB Grille Black \#BY4584-22
.480000
50 Yard Rolls
30-48-1686 FEET, 1.48 INCH 0.D., RBR, BLK
4.000000

Service Dept.
6033 De Soto Ave.
Woodland Hills, CA 91367
P. 818-575-3600
F. 818-676-1585
E. service@line6.com

## Procedure for reinitialization of AX2 (Hard reset)

Power unit up while holding down the "User/Preset" and "Save" buttons. Hold for 3 seconds and then release. Factory presets will be re-installed.

## Procedure for identifying firmware version of AX2

While amp is on, hold down the top ("Aux/Midi") and bottom ("Main") function buttons simultaneously. The software version will be displayed in the LED display.

## Accessing the test routines

Press and hold the Save button while turning power on until the display reads "SrA" to access the internal test routines. Different tests can be selected by using the BANK UP or BANK DOWN buttons. The selected test is started by pressing the TUNER button. The display will then usually show "Err" (error) or "PAS" (pass) to indicate the test status. The nine tests are:

\#	Display	Name	Description	Result Display
1.	SrA	SRAM test	Tests SRAM (U15)	Err or PAS
2.	EPr	EPROM test	Tests EPROM (U14)	Err or PAS
3.	LEd	LED test	Lights all LEDs	no result; visual inspection
4.	bAt	Battery test	Tests SRAM retention	Err or PAS
5.	bUt	Button test	Tests buttons \& pots	Displays button or pot name
6.	PEd	Pedal test	[only at factory]	Err
7.	AC	AC timer test	Tests AC freq counter	Err or PAS
8.	idi	MIDI test	Tests MIDI in \& out	Err or PAS
9.	Aud	Audio test	Passes audio with delay	Err or blank
10.	AdA	A/D/A path test	Tests audio THD, etc.	Err or PAS (version 1.05)

Power off then on to exit the test routines.

## Descriptions of Test Routines

SrA The SRAM test performs read and write cycles to all memory locations of the SRAM. If the data read back is different than what was written, the display will show Err. If this occurs, check all signals connected to U15.

EPr The EPROM test calculates the checksum of the EPROM and compares it with the checksum stored in the EPROM. If it does not match, the display will show Err. If this occurs, it usually indicates that there is some erroneous data in the EPROM (or a missing checksum), and the EPROM should be replaced (U14). It could also be caused by a problem on an upper address line connected to the EPROM. However, in general, major problems with the EPROM or the address and data lines are likely to prevent any of the test routines to be entered in the first place.

LEd The LED test can be used to check that all LEDs are functioning properly. First, all LEDs will turn on at the same time. Then, the software will cycle each LED on and off one at a time. When the six LEDs next to the edit potentiometers are cycled, they will be lit at half brightness. NOTE: When entering this test, holding TUNER will cause all of the LEDs to stay on until the button is released.
bAt The battery test actually is testing the SRAM's contents, which can be an indicator as to the battery status. It checks to see if a specific set of SRAM locations contain specific data. This data is loaded in once at the factory, and it is assumed that if the data remains unchanged in the field, the battery is working properly. If an error occurs, it will be necessary to check the battery, the SRAM, and the reset circuitry. Once an error has occurred, it will continue to reoccur until the specific data is written back to the SRAM. This can be performed from within this test routine by pressing and holding
the SOUND D button and the USER/PRESET button. The display will show "---" to indicate that the SRAM has been initialized.
bUt The button test can be used to check that each button and edit potentiometer is working properly. Pressing each button will cause the name of that button to be displayed. The display will show as follows:

Button	Display
no button	""--""
User/Preset	"U-P"
Sound Bank Up	"UP"
Sound Bank Down	"Dn"
Sound A	"A "
Sound B	"b"
Sound C	"C C"
Sound D	"d ""
Tuner	"tnr"
Compare	"CPr"
Store Sound	"Str"
Function 1	"Fn"
Function 2	"Fn2"
Function 3	"Fn3"
Function 4	"Fn4"
Function 5	"Fn5"
Function 6	"Fn6"

The function buttons are the small black buttons to the left of the edit matrix. The top button is 1 and bottom button is 6 . When any of the six edit potentiometers are turned, the display should read "P1" through "P6", depending on which pot was turned. This test can be exited by pressing the function 5 and function 6 buttons at the same time. This is indicated by the LEDs next to each of these switches being lit.

PEd The sixth test is performed on a test fixture at the factory to verify that the pedal inputs are working. Without the test fixture, this test will always result in an "Err". For this reason, this test should always be skipped. The pedal inputs can be easily tested by performing a functional test to see that the wah and volume functions are being controlled by the pedals. If the pedal inputs do not work, try checking that the voltages reach the ADC (U7), and that the switch in each jack is working properly. This switch lets the micro know that something is plugged in, and is sensed by checking the ADC voltage at U7 pin 11 and comparing it to the table shown in the Power PCB schematic.

AC The AC verifies that the micro can properly determine the current AC line frequency. It expects to find 50 Hz or 60 Hz , and will display an "Err" if the results are different. If this occurs, check the Power PCB signal labeled AC, as well as R38 and Q1 on the Processor board.
idi The MIDI requires that a MIDI cable be connected from the MIDI output back to the MIDI input. Without this cable, this test will always fail. If the test fails with the cable, check the connection first, then check U4 on the Power board, and then check for the serial interface signals at the microcontroller U9 pins 11 and 13 and follow the signal path through to the MIDI connectors.

AUd The Audio takes the Guitar input and passes it unmodified to the left speaker, and takes the Aux input and passes it unmodified to the right speaker. It also adds a 1 second
delayed signal to each of these signals in order to verify that the audio DRAM (U13) is functioning properly. The audio passes through both DSPs, so this test checks their functionality as well. The display should be blank during this test. If the display reads "rd1 or "rd2" followed by "Err", this means that an error occurred when the micro tried to read data from either DSP. If the error was "rd1", then the problem was between the micro (U9) and the DSP U19. If the error was "rd2", then the problem was between the micro and DSP U12.
AdA The speaker outputs must be connected to the aux and guitar inputs. The left speaker output should be connected to the guitar input, and the right speaker output should be connected to the aux input. **Since the speaker outputs are too high a level for the inputs, a pad must be used. Each speaker output should pass through a 30 K resistor, followed by a 1 K resistor to ground prior to connecting to the input. ** The Guitar and Aux input level knobs should be set to 5 (pointing straight up), and the Master volume knob should be at 0 (off). When this test is first entered, the display will read "OFF", to inform you that the Master volume should be off. Press the Tuner button. The software will output a 1 KHz sine wave on both outputs, and verify that no signal is coming in (since the Master is off). During this test, a dot will appear to indicate the test is running (display reads "OFF."). If signal is received, the display will show "Err", followed by one of the following:
n L Noise present on left input
n r Noise present on right input
$\mathrm{nLr} \quad$ Noise present on left and right inputs
A L 1 K Hz Audio tone present at left input
A r $\quad 1 \mathrm{~K} \mathrm{~Hz}$ Audio tone present at right input
ALr $\quad 1 \mathrm{~K} \mathrm{~Hz}$ Audio tone present at left and right inputs
If there are no errors, the display will momentarily show "PAS", followed by "HLF". This stands for "half", and indicates that the Master volume should now be turned up half way, or 5 (pointing straight up). Pressing Tuner again will initiate the next tests, and cause a dot to be displayed again. The software will then check the level, frequency response, and distortion of both inputs and outputs. It performs this test by outputting a sine wave at $40 \mathrm{~Hz}, 1 \mathrm{KHz}$, and then 10 KHz , and measuring the absolute input level, the relative input level, and the level of signal at frequencies other than the tone being generated. If there is an error, the display will show "Err", followed by one of the following alternating messages:

Ldt	XX	Left distortion too high by XX dB.
rdt	XX	Right distortion too high by XX dB.
L40	$\pm$ XX	Left amplitude error at 40 Hz of $\pm$ XX dB.
L 1	$\pm$ XX	Left amplitude error at 1 KHz of $\pm$ XX dB.
L10	$\pm$ XX	Left amplitude error at 10 KHz of $\pm$ XX dB.
LA	$\pm$ XX	Left amplitude error of $\pm$ XX dB.
r40	$\pm$ XX	Right amplitude error at $40 \mathrm{~Hz} \mathrm{of} \pm$ XX dB.
r 1	$\pm$ XX	Right amplitude error at 1 KHz of $\pm$ XX dB.
r10	$\pm$ XX	Right amplitude error at $10 \mathrm{KHz} \mathrm{of} \pm$ XX dB.
r A	$\pm$ XX	Right amplitude error of $\pm$ XX dB.
L-r		Left signal crosstalk into the right input.
r-L		Right signal crosstalk into the left input.

The relative amplitude of the three tones are used to determine the frequency response. If any one tone is more than 1 dB from the relative volume of the other tones, it will be displayed as an error. If all three tones are more than 1 dB apart from each other, the one that is the furthest away from the other two will be displayed. If the amplitude of all
three tones are within 1 dB of each other, the average is taken and compared with an absolute level that is expected when all knobs are at 5. If this absolute amplitude has an error of $\pm 2 \mathrm{~dB}$ or more, the display will show the error amount. When measuring the level of each tone, the software will also measure the level after passing the signal through a steep notch filter set to the same frequency as the tone. If the level after the filter is greater than a predetermined level, the display will show the number of dB above this level that the distortion exists. If when performing the tests on the left input, signal is received in the right, or vice versa, the display will show this as a crosstalk error. If there are no errors, the display will momentarily show "PAS", followed by "FUL". This indicates that the Master volume should now be turned up all the way to 10 . Pressing Tuner again will initiate the next tests, and display a dot. The software will again check the level, frequency response, and distortion of both inputs and outputs, and will display "PAS" or any of the above mentioned error displays. The tests are identical, except that the software's output level is dropped 6 dB to accommodate for the increase in Master volume level. If an error occurs only during the half way up test and not the full test, or vice versa, the Master stereo pot or its connections should be considered the likely source of the problem.

## Troubleshooting

For technicians familiar with component level troubleshooting and surface mount components, the test routines, the circuit descriptions and the schematic diagrams should be useful tools in focusing in on the problem. If the problem cannot be specifically located, an attempt should be made to identify which board is the source of the problem. At that point, a board swap would be the most likely solution.

## AX2 TROUBLE SHOOTING GUIDE:

This section will discuss some of the problems that may cause a test to fail. Each section will include part information such as reference number, part type, and geographical location on board.

TEST \#1: SRAM Test: (display shows "SrA") Checks functionality of SRAM.

Part Info:
U15: SRAM, located below EPROM (28-pin thru-hole IC).
1.) Short between address/data lines
2.) Bad connection caused by cut trace or bad feedthru on address/data line.
3.) +5 v or digital ground not connected.

TEST \#2: EPROM Test: (display shows "Epr") Checks functionality of EPROM.

Part Info:
U14: EPROM, 28-pin thru-hole IC.
1.) Short between address/data lines.
2.) Bad connection caused by cut trace or bad feedthru on address/data line.
3.) +5 v or digital ground not connected.

TEST \#3: LED Test: (display shows "Led") Checks functionality of each LED and each segment of triple 7 -segment display.

Part Info:
D10: triple 7-segment display, top side of board.
ALL red LEDs on top side of board.
M4: 20-pin ribbon cable connector, top center of board.
U9: 8031 microcontroller, next to crystal.
U16: TPIC6B273DW, left of M4.
U17: HC574, center of board.
1.) Entire COLUMN (vertical row) doesn't light up. Check connection between cathode side (round pad) of each LED and U17. Refer to schematic pg. 2.
2.) Entire ROW (horizontal row) doesn't light up. Check for a bad connection on anode side (square pad) of LED. Refer to schematic pg. 2.
3.) More than one LED lights up at the same time during individual LED light up test. Check for short between LED pads and ground plane.

TEST \#4: BATTERY Test: (display shows "bAt") Checks battery. However, an error for this test could be caused by something other than the battery.

## Part Info:

M10: 3v lithium battery, lower center of board, looks like a silver disc.
1.) Measure voltage on battery. Should be 3 volts.

TEST \#5: BUTTON \& POTENTIOMETER Test: (display shows "bUt") Checks functionality of buttons and potentiometers.

Part Info:
SW1-16: Carbon coated button pads on top side of board.
R26-31: Potentiometers
U7: HC574, left side of board above potentiometer R29.
U8: HC574, center of board below ribbon cable connector.
U9: 8031, square IC with pins on all 4 sides next to crystal.
U18: HC138, lower center of board to the right of crystal.
BUTTONS:
1.) Entire ROW (horizontal row) doesn't work. Check connection from lower button pad to corresponding port pin $(7,8,9)$ on U 9 .
2.) Entire COLUMN (vertical row) doesn't work. Check connection from upper button pad to anode side of corresponding diode. Check connection from cathode side of diode to U8.
3.) Single button doesn't work. Bad connection due to cut trace or bad feedthru.
4.) Check for short between button pads and analog ground plane.
5.) Check connection between U8 pin\#11 \& U18 pin\#13.
6.) Check address lines between U9 and U18.

## POTENTIOMETERS:

1.) Single potentiometer doesn't work. Check connection from wiper pin \#2 and U7.

No Pots Work:
2.) Check for connection between U7 pin \#16 \& U9 pin \#9.
3.) Check for connection between U7 pin \#17 \& U9 pin \#4.
4.) Check for connection between U7 pin \#18 \& U9 pin \#3.
5.) Check for connection between U7 pin \#15 \& U8 pin \#12.

TEST \#6: PEDAL Test: (display shows "Ped") Checks connections between M4, U7 and resistors (R34-37).

Part Info:
M4: 20-pin ribbon cable connector, top center of board.
R34-37: resistors, located around U7
U7: HC574, left side of board above potentiometer R29.
1.) "P17","Err" - Check that R34 is 3 K ohms, check all other connections related to M4 pin\#17 \& U7 pin \#7.
2.) "P18","Err" - Check that R35 is 3 K ohms, check all other connections related to M4 pin\#18 \& U7 pin \#8.
3.) "P19","Err" - Check that R36 is 1 K ohms, check all other connections related to M4 pin\#19 \& U7 pin \#9.
4.) "P20","Err" - Check that R37 is 1 K ohms, check all other connections related to M4 pin\#20 \& U7 pin \#11.

TEST \#7: AC Test: (display shows "AC ") Checks for 60Hz AC voltage Part Info:
M4: 20-pin ribbon cable connector (M4), top center of board.
Q1: transistor, near center of board by mounting hole.
R38: 220K resistor below Q1.
U8: HC574, center of board below ribbon cable connector.
U9: 8031, square IC with pins on all 4 sides next to crystal.
1.) Check all connections between parts listed above.

TEST \#8: MIDI Test: (display shows "idi") Checks MIDI circuitry and connections to M4 20-pin ribbon cable.

Part Info:
Q2: transistor, between pots R26,27.
R39,40: 4.7K, 220 resistors, near Q2.
R41: 470 resistor, below U9.
M4: 20-pin ribbon cable pin \#1,2, top center of board.
U9: 8031, square IC with pins on all 4 sides next to crystal.
U10: HC14, between pots R26,27 pin \#3,4.
1.) Check all connections between parts listed above.

TEST \#9: AUDIO/DRAM/8031 READ Test: (display shows "Aud")
Checks that audio signal passes from both inputs to both outputs. Checks the DRAM for functionality. Checks that 8031 microcontroller is writing to both DSP chips (U12,19) It is impossible
to list all the potential problems for this test. It is best to find the area where the problem is and go from there. Below is a basic flow chart of how the audio passes from the input of the board to the output.


Part Info:
J1,J2: 1/4" jacks on break-away board.
M1: 4-pin header, lower right corner of board.
M2: 4-pin header, near J1,J2 on break-away board.
M3: 5-pin header, 2 inches right of silver disc battery.
M11: 5-pin header, by R71 stereo pot on break-away board.
U1: TLO84 quad op-amp, lower right hand corner of board.
U2: PCM1760,ADC filter, right edge of board.
U3: DF1760, ADC, above U2.
U4: AKM4320, DAC, between pots R6,R8.
U5: 5532, dual op-amp, next to M3.
U9: 8031, square IC with pins on all 4 sides next to crystal.
U12,19: TMS57070, DSP, left side of board near break-away board.
U13: uPD421165G5-7JF, DRAM, near break-away board by U19.

Analog Input: Check for audio at these points. AUX Input: 1.) $1 / 4$ " jack J1 pin \#1 and 4-pin header M2 pin \#1.
2.) U 1 pin $\# 3,1,8$. Make sure volume (R6) is up.
3.) U 2 pin \#1,3 (it is normal for signal to look "fuzzy" here.)

MAIN Input:1.) $1 / 4$ " jack J2 pin \#1 and 4-pin header M2 pin \#4.
2.) U1 pin $\# 5,7,14$. Make sure volume (R8) is up.
3.) U2 pin \#12,14 (it is normal for signal to look "fuzzy" here.)

ADC: At this point the audio has been converted to digital so you must check for a digital signal.
1.) U 3 pin $\# 18$.
2.) Check for clock signals at $U 3$ pins \#15-17.

DSP:
1.) Check for ADC signal at $\mathrm{U} 12,19$ pin $\# 56$.
2.) Check for digital signal at U19 pin \#57.
3.) Check for DAC signal at U19 pin \#49.
4.) Check for clock signals at U12,19 pin \#14,55,67,68,69

DAC: Audio is converted from digital back to analog.
1.) Check for DAC signal (digital signal) at U 4 pin \#8
1.) Check for analog audio signal at $U 4$ pin $\# 17,18$.
2.) Check U4 pin \#19 for reference voltage 2.5 v dc.

If the reference voltage is incorrect, replace U4.
3.) Check clock signals at $U 4$ pin $\# 5,7,9$.

AUDIO OUT: Check for analog audio signal at these points. LEFT:1.) M3 pin \#1,2. Make sure volume (R71 on breakaway board) is up.
2.) U5 pin $\# 2,13$.

RIGHT:1.) M3 pin \#4,5. Make sure volume (R71 on breakaway board) is up.
2.) $\mathrm{U} 5 \mathrm{pin} \# 7,11$.

DRAM: 1.) Check +5 v and ground connections on U13.
2.) Check all connections between U13 and U19.

8031 READ:1.) Check all connections between U19 and U9 for "rdl", "Err" message.
2.) Check all connections between U12 and U9 for "rd2", "Err" message.

## MISC PROBLEMS:

SEVEN SEGMENT \& LEDs DON'T LIGHT UP
1.) Check for shorts between +5 v and ground.
2.) Check that reset on U9 pin \#10 is low (0v).
3.) Check for 6.2 v across D57 zener diode.
4.) Check address/data line connections.
5.) Check for +5 v on U9-17

